Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
One Health ; 18: 100712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38590630

ABSTRACT

Brucellosis is an important zoonotic disease affecting animals and subsistence harvesters in the circumarctic. We investigated recent trends (2015-2022) of brucellosis seropositivity in caribou (Rangifer tarandus) and muskoxen (Ovibos moschatus) in the Central Canadian Arctic by using data from community-based wildlife health surveillance programs. The overall sample prevalence of Brucella antibodies was 10.0% (n = 271) in muskoxen and 15.5% (n = 277) in caribou. Sample seroprevalence in muskoxen varied geographically with an increasing trend of exposure on NW Victoria Island (from 0% to 36.8% between 2016 and 2022; Kendall tau = 0.283, p = 0.001). The presence of Brucella suis biovar 4 was confirmed by culture from clinical cases in this area. Our results indicate that Brucella suis biovar 4 continues to circulate in the Central Canadian Arctic in caribou and muskoxen and may be now circulating in muskoxen independently from caribou. These findings highlight the need to better understand the ecology and drivers of brucellosis emergence in Arctic multi-host systems.

2.
J Wildl Dis ; 60(2): 461-473, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38334201

ABSTRACT

Orf virus (genus Parapoxvirus) has been associated with gross skin lesions on muskoxen (Ovibos moschatus) from Victoria Island, Nunavut, Canada, where muskox populations are experiencing population declines. Orf virus causes painful proliferative and necrotizing dermatitis upon viral replication and shedding, which may lead to animal morbidity or mortality through secondary infections and starvation. Herpesvirus, known to cause gross lesions on skin and mucosa during active viral replication, has also been documented in muskoxen but to date has not been associated with clinical disease. Our objective was to characterize the variation of orf virus and herpesvirus in wild muskoxen of the Canadian Arctic. Tissue samples including gross skin lesions from the nose, lips, and/or legs were opportunistically collected from muskoxen on Victoria Island, Nunavut and Northwest Territories, and mainland Nunavut, Canada, from 2015 to 2017. Sampled muskoxen varied in age, sex, location, hunt type, and body condition. Tissues from 60 muskoxen were tested for genetic evidence of orf virus and herpesvirus infection using PCR targeting key viral genes. Tissues from 38 muskoxen, including 15 with gross lesions, were also examined for histological evidence of orf virus and herpesvirus infection. Eleven muskoxen (10 from Victoria Island and one from mainland Nunavut) with gross lesions had microscopic lesions consistent with orf virus infection. Muskox rhadinovirus 1, a gammaherpesvirus endemic to muskoxen, was detected in 33 (55%) muskoxen including 17 with gross lesions. In all tissues examined, there was no histological evidence of herpesvirus-specific disease. Sequencing and characterization of amplified PCR products using phylogenetic analysis indicated that a strain of orf virus, which appears to be unique, is likely to be endemic in muskoxen from Victoria Island and mainland Nunavut. Many of the muskoxen are also subclinically infected with a known muskox-endemic strain of herpesvirus.


Subject(s)
Herpesviridae Infections , Orf virus , Rhadinovirus , Animals , Canada/epidemiology , Orf virus/genetics , Phylogeny , Ruminants , Herpesviridae Infections/veterinary
3.
Sci Rep ; 13(1): 16524, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37783688

ABSTRACT

Assessing wildlife health in remote regions requires a multi-faceted approach, which commonly involves convenient samplings and the need of identifying and targeting relevant and informative indicators. We applied a novel wildlife health framework and critically assessed the value of different indicators for understanding the health status and trends of an endangered tundra caribou population. Samples and data from the Dolphin and Union caribou herd were obtained between 2015 and 2021, from community-based surveillance programs and from captured animals. We documented and categorized indicators into health determinants (infectious diseases and trace elements), processes (cortisol, pathology), and health outcomes (pregnancy and body condition). During a recent period of steep population decline, our results indicated a relatively good body condition and pregnancy rates, and decreasing levels of stress, along with a low adult cow survival. We detected multiple factors as potential contributors to the reduced survival, including Brucella suis biovar 4, Erysipelothrix rhusiopathiae and lower hair trace minerals. These results remark the need of targeted studies to improve detection and investigations on caribou mortalities. We also identified differences in health indicators between captured and hunter sampled caribou, highlighting the importance of accounting for sampling biases. This integrative approach that drew on multiple data sources has provided unprecedented knowledge on the health in this herd and highlights the value of documenting individual animal health to understand causes of wildlife declines.


Subject(s)
Erysipelothrix , Reindeer , Pregnancy , Female , Cattle , Animals , Animals, Wild , Pregnancy Rate , Health Status
4.
J Wildl Dis ; 58(1): 228-231, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34780597

ABSTRACT

Erysipelothrix rhusiopathiae was detected immunohistochemically in contagious ecthyma (orf virus) dermatitis in two muskoxen (Ovibos moschatus), harvested and found dead in 2014 and 2015, respectively, on Victoria Island, Canada. This may help target further research on E. rhusiopathiae epidemiology and mechanisms of infection in muskoxen, recently associated with widespread mortalities in Canada's Arctic.


Subject(s)
Dermatitis , Ecthyma, Contagious , Erysipelothrix , Sheep Diseases , Animals , Canada/epidemiology , Dermatitis/epidemiology , Dermatitis/veterinary , Ecthyma, Contagious/epidemiology , Ruminants , Sheep
5.
Pathogens ; 12(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36678376

ABSTRACT

Tularemia is a zoonotic disease found throughout most of the northern hemisphere that may experience range expansion with warming temperatures. Rodents and lagomorphs are reservoirs for the disease, and outbreaks of tularemia often follow peaks in their abundance. As small mammals dominate the diet of arctic foxes (Vulpes lagopus), we determined whether they may serve as sentinels by identifying antibodies in live-captured and harvested foxes from northern Canada. Overall seroprevalence was 2% (CI95 1-2%) in 176 foxes harvested in 2018-2019 compared to 17% (CI95 12-22%) of 230 foxes captured live in 2011-2021. Prevalence was at an all-time high in 2018, following a peak in vole abundance in 2017. Antibodies were identified in fox pups born in 2018 and 2019, suggesting that F. tularensis was actively transmitted during the summers. High precipitation during the summer, increased snow cover and colder temperatures in May, and a higher abundance of voles were all associated with increased seroprevalence in live-captured foxes. Thus, exposure to F. tularensis is largely mediated through climate and rodent populations in the Canadian Arctic, and arctic foxes are useful sentinels for F. tularensis in northern ecosystems. Further studies should investigate whether infection impacts arctic fox survival and reproductive success in the circumpolar North.

6.
J Wildl Dis ; 57(1): 225-229, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33635972

ABSTRACT

A wild muskox (Ovibos moschatus) with dermatitis typical of contagious ecthyma had secondary bacterial septicemia with Corynebacterium freneyi that included laminitis, hepatitis, and suppurative encephalitis. This case supports the association between orf virus infection and fatal secondary infections, which may have contributed to population declines on Victoria Island, Canada.


Subject(s)
Corynebacterium Infections/veterinary , Corynebacterium/isolation & purification , Ecthyma, Contagious/complications , Ruminants/microbiology , Sepsis/veterinary , Animals , Animals, Wild , Corynebacterium Infections/epidemiology , Corynebacterium Infections/pathology , Male , Sepsis/microbiology
7.
Int J Parasitol Parasites Wildl ; 13: 269-274, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33312858

ABSTRACT

Parasitic zoonotic nematodes of the genus Trichinella circulate in wildlife and domestic hosts worldwide through the ingestion of infected meat. Due to their role as scavengers and predators in terrestrial and marine arctic ecosystems, Arctic foxes (Vulpes lagopus) are ideal sentinels for the detection of Trichinella spp. In this study, we determined the prevalence, larval intensity, and species of Trichinella from 91 trapped Arctic foxes collected around the northern Canadian communities of Sachs Harbour (Ikaahuk) on Banks Island (n = 23), and Ulukhaktok and Cambridge Bay (Ikaluktutiak) on Victoria Island (n = 68). Using pepsin-HCl digestion, larvae of Trichinella spp. were recovered from the left forelimb muscle (flexor carpi ulnaris) in 19 of the 91 foxes (21% prevalence, 95% CI: 14-30%). For the first time in Arctic foxes in Canada, Trichinella species were identified using multiplex PCR that was followed up with PCR-RFLP to distinguish between T. nativa and T. chanchalensis. All infected foxes harbored T. nativa, and one fox was co-infected with Trichinella T6; the latter is a new host record. Age of the fox was significantly associated with Trichinella spp. infection and the odds of being infected were three times higher in foxes ≥2 years of age (p = 0.026), indicating cumulative exposure with age. While Arctic foxes are seldom harvested for human consumption, they serve as sentinel hosts of Trichinella spp., confirming the presence of the parasite in wildlife in the region.

9.
Sci Rep ; 10(1): 17323, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057173

ABSTRACT

Rapid climate warming in the Arctic results in multifaceted disruption of biodiversity, faunal structure, and ecosystem health. Hypotheses have linked range expansion and emergence of parasites and diseases to accelerating warming globally but empirical studies demonstrating causality are rare. Using historical data and recent surveys as baselines, we explored climatological drivers for Arctic warming as determinants of range expansion for two temperature-dependent lungworms, Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis, of muskoxen (Ovibos moschatus) and caribou (Rangifer tarandus), in the Canadian Arctic Archipelago from 1980 through 2017. Our field data shows a substantial northward shift of the northern edge of the range for both parasites and increased abundance across the expanded ranges during the last decade. Mechanistic models parameterized with parasites' thermal requirements demonstrated that geographical colonization tracked spatial expansion of permissive environments, with a temporal lag. Subtle differences in life histories, thermal requirements of closely related parasites, climate oscillations and shifting thermal balances across environments influence faunal assembly and biodiversity. Our findings support that persistence of host-parasite assemblages reflects capacities of parasites to utilize host and environmental resources in an ecological arena of fluctuating opportunity (alternating trends in exploration and exploitation) driving shifting boundaries for distribution across spatial and temporal scales.


Subject(s)
Ecosystem , Global Warming , Intestinal Diseases, Parasitic/veterinary , Ruminants/parasitology , Strongylida Infections/veterinary , Strongylida/isolation & purification , Animal Distribution , Animals , Arctic Regions , Feces/parasitology , Host-Parasite Interactions , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Larva , Life Cycle Stages , Reindeer/parasitology , Species Specificity , Strongylida/growth & development , Strongylida Infections/epidemiology , Strongylida Infections/parasitology
10.
PLoS One ; 15(4): e0231724, 2020.
Article in English | MEDLINE | ID: mdl-32315366

ABSTRACT

BACKGROUND: Muskoxen are a key species of Arctic ecosystems and are important for food security and socio-economic well-being of many Indigenous communities in the Arctic and Subarctic. Between 2009 and 2014, the bacterium Erysipelothrix rhusiopathiae was isolated for the first time in this species in association with multiple mortality events in Canada and Alaska, raising questions regarding the spatiotemporal occurrence of the pathogen and its potential impact on muskox populations. MATERIALS AND METHODS: We adapted a commercial porcine E. rhusiopathiae enzyme-linked immunosorbent assay to test 958 blood samples that were collected from muskoxen from seven regions in Alaska and the Canadian Arctic between 1976 and 2017. The cut-off between negative and positive results was established using mixture-distribution analysis, a data-driven approach. Based on 818 samples for which a serological status could be determined and with complete information, we calculated trends in sample seroprevalences in population time-series and compared them with population trends in the investigated regions. RESULTS: Overall, 219/818 (27.8%, 95% Confidence Interval: 24.7-31.0) samples were classified as positive for exposure to E. rhusiopathiae. There were large variations between years and regions. Seropositive animals were found among the earliest serum samples tested; 1976 in Alaska and 1991 in Canada. In Alaskan muskoxen, sample seroprevalence increased after 2000 and, in two regions, peak seroprevalences occurred simultaneously with population declines. In one of these regions, concurrent unusual mortalities were observed and E. rhusiopathiae was isolated from muskox carcasses. In Canada, there was an increase in sample seroprevalence in two muskox populations following known mortality events that had been attributed to E. rhusiopathiae. CONCLUSION: Our results indicate widespread exposure of muskoxen to E. rhusiopathiae in western Canada and Alaska. Although not new to the Arctic, we documented an increased exposure to the pathogen in several regions concurrent with population declines. Understanding causes for the apparent increased occurrence of this pathogen and its association with large scale mortality events for muskoxen is critical to evaluate the implications for wildlife and wildlife-dependent human populations in the Arctic.


Subject(s)
Artiodactyla/microbiology , Erysipelothrix Infections , Erysipelothrix/isolation & purification , Alaska , Animals , Arctic Regions , Canada , Erysipelothrix Infections/epidemiology , Erysipelothrix Infections/microbiology , Seroepidemiologic Studies , Serologic Tests/methods
11.
Ambio ; 49(3): 805-819, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31187429

ABSTRACT

Muskoxen (Ovibos moschatus) are an integral component of Arctic biodiversity. Given low genetic diversity, their ability to respond to future and rapid Arctic change is unknown, although paleontological history demonstrates adaptability within limits. We discuss status and limitations of current monitoring, and summarize circumpolar status and recent variations, delineating all 55 endemic or translocated populations. Acknowledging uncertainties, global abundance is ca 170 000 muskoxen. Not all populations are thriving. Six populations are in decline, and as recently as the turn of the century, one of these was the largest population in the world, equaling ca 41% of today's total abundance. Climate, diseases, and anthropogenic changes are likely the principal drivers of muskox population change and result in multiple stressors that vary temporally and spatially. Impacts to muskoxen are precipitated by habitat loss/degradation, altered vegetation and species associations, pollution, and harvest. Which elements are relevant for a specific population will vary, as will their cumulative interactions. Our summaries highlight the importance of harmonizing existing data, intensifying long-term monitoring efforts including demographics and health assessments, standardizing and implementing monitoring protocols, and increasing stakeholder engagement/contributions.


Subject(s)
Ecosystem , Ruminants , Animals , Arctic Regions , Biodiversity , Uncertainty
12.
Ecohealth ; 16(3): 488-501, 2019 09.
Article in English | MEDLINE | ID: mdl-31414318

ABSTRACT

Brucella serostatus was evaluated in 3189 muskoxen sampled between 1989 and 2016 from various locations of the Canadian Arctic archipelago and mainland, near the communities of Sachs Harbour and Ulukhaktok, Northwest Territories, and Cambridge Bay and Kugluktuk, Nunavut. Brucella antibodies were found only in muskoxen sampled around Cambridge Bay, both on southern Victoria Island and on the adjacent mainland (Kent Peninsula). Consistent with participatory epidemiology data documented from local harvesters describing increased Brucella-like syndromes (swollen joints and lameness) and a decreased proportion of juveniles, the apparent Brucella seroprevalence in the sampled muskoxen of the Cambridge Bay area increased from 0.9% (95% CI 0.3-2.1) in the period of 1989-2001 to 5.6% (95% CI 3.3-8.9) in 2010-2016. The zoonotic bacteria Brucella suis biovar 4 was also cultured from tissues of muskoxen sampled on Victoria Island near Ulukhaktok in 1996 (n = 1) and Cambridge Bay in 1998, 2014, and 2016 (n = 3). Overall, our data demonstrate that B. suis biovar 4 is found in muskoxen that are harvested for food and by guided hunts on Victoria Island and Kent Peninsula, adding an important public health dimension to this study. Robust participatory epidemiology data on muskox health and diseases greatly enhanced the interpretation of our Cambridge Bay data and, combined with the serological and microbiological data, provide compelling evidence that the prevalence of B. suis biovar 4 has increased in this area since the late 1990s. This study enhances the available knowledge on Brucella exposure and infection in muskoxen and provides an example of how scientific knowledge and local knowledge can work together to better understand disease status in wildlife.


Subject(s)
Animals, Wild/microbiology , Brucellosis/veterinary , Ruminants/microbiology , Animals , Antibodies, Bacterial/isolation & purification , Arctic Regions , Canada/epidemiology , Seroepidemiologic Studies
13.
Science ; 364(6446): 1135-1137, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31221846

Subject(s)
Animals, Wild , Animals , Motion
14.
Conserv Physiol ; 5(1): cox052, 2017.
Article in English | MEDLINE | ID: mdl-28948023

ABSTRACT

Muskoxen (Ovibos moschatus) are increasingly subject to multiple new stressors associated with unprecedented climate change and increased anthropogenic activities across much of their range. Hair may provide a measurement of stress hormones (glucocorticoids) over periods of weeks to months. We developed a reliable method to quantify cortisol in the qiviut (wooly undercoat) of muskoxen using liquid chromatography coupled to tandem mass spectrometry. We then applied this technique to determine the natural variability in qiviut cortisol levels among 150 wild muskoxen, and to assess differences between sexes, seasons and years of collection. Qiviut samples were collected from the rump of adult muskoxen by subsistence and sport hunters in seven different locations in Nunavut and the Northwest Territories between 2013 and 2016. Results showed a high inter-individual variability in qiviut cortisol concentrations, with levels ranging from 3.5 to 48.9 pg/mg (median 11.7 pg/mg). Qiviut cortisol levels were significantly higher in males than females, and varied seasonally (summer levels were significantly lower than in fall and winter), and by year (levels significantly increased from 2013 to 2015). These differences may reflect distinct environmental conditions and the diverse stressors experienced, as well as physiological and/or behavioural characteristics. Quantification of qiviut cortisol may serve as a valuable tool for monitoring health and informing conservation and management efforts.

15.
J Wildl Dis ; 52(3): 719-24, 2016 07.
Article in English | MEDLINE | ID: mdl-27285415

ABSTRACT

An adult male muskox ( Ovibos moschatus ), harvested on 26 August 2014 on Victoria Island, Nunavut, in the Canadian Arctic, had proliferative dermatitis on the muzzle and fetlocks suggestive of contagious ecthyma or orf (Parapoxvirus). Histopathologic features of the lesions were consistent with this diagnosis. Orf virus DNA, phylogenetically similar to an isolate from a captive muskox of the Minnesota Zoo, US, was detected in the lesions by PCR using Parapoxvirus primers. Additionally, there was a metaphyseal abscess with a cortical fistula in the right metacarpus from which Brucella suis biovar 4 was isolated and identification supported by PCR. Brucella spp. antibodies were detected in serum. Finally, 212 nodules were dissected from the lungs. Fecal analysis and lung examination demonstrated co-infection with the lungworms Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis. The zoonotic potential of orf and rangiferine brucellosis adds an important public health dimension to this case, particularly given that muskoxen are a valuable source of food for Arctic residents. Careful examination of these pathogens at a population level is needed as they may contribute to muskox population decline and potentially constitute a driver of food insecurity for local communities. This case underscores the importance of wildlife health surveillance as a management tool to conserve wildlife populations and maintain food security in subsistence-oriented communities.


Subject(s)
Brucellosis/veterinary , Ecthyma, Contagious/pathology , Lung Diseases, Parasitic/veterinary , Nematode Infections/veterinary , Ruminants , Animals , Arctic Regions/epidemiology , Brucellosis/epidemiology , Brucellosis/microbiology , Brucellosis/pathology , Canada/epidemiology , Ecthyma, Contagious/epidemiology , Ecthyma, Contagious/virology , Lung Diseases, Parasitic/epidemiology , Lung Diseases, Parasitic/parasitology , Lung Diseases, Parasitic/pathology , Male , Nematode Infections/epidemiology , Nematode Infections/parasitology , Nematode Infections/pathology , Orf virus/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...